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Fast Transient Fluorescence (FTRF) Technique for
Swelling of Gels in Solvent Mixtures

B. Yönel, M. Erdoğan, and Ö. Pekcan*

Department of Physics, Istanbul Technical University,

Maslak, Istanbul, Turkey

ABSTRACT

Strobe Master System (SMS), is introduced for studying THE swelling of disc shaped

gels in chloroform–heptane mixtures. Gels were prepared by free radical

copolymerization of methyl (methacrylate) (MMA) and ethylene glycol dimethacrylate

(EGDM). Pyrene (P) was introduced as a fluorescence probe during polymerization and

the existence of P were measured using (SMS) during in situ swelling processes.

Various percents of chloroform in chloroform–heptane mixtures were used as a

swelling agent. For the duration, t2 of P in the gel were found to be decreased as

swelling proceeded. Li–Tanaka’s equation was employed to determine the time

constants, tc and cooperative diffusion coefficients, Dc which were found to be

decreased and increased respectively by increasing the chloroform content in the

solvent mixtures.

INTRODUCTION

Fluorescence dyes can be used to study local environments, basically with two types

of experiments. When the dye is simply added to the system as a small molecule, the dye is

referred to as a probe which is available commercially. Consequently, such experiments

are easy to carry out, but are often difficult to interpret because one has to know where the
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dye is located in the system. If one can prepare an experiment which allows the dye to be

attached covalently to a specific component of a system such as a polymer chain segment,

the dyes are referred to as labels. The question can be raised whether the presence of the

dye disturbs the system or disturbs its own local environments in the system. Disturbances

are most common where high dye concentration leads to aggregation, and in crystalline

systems where the order in the system can be affected by the dye. Disturbances are much

less likely when the fluorescent dye is incorporated into an amorphous fluid or glassy phase.

Volume phase transitions in gels may occur from dry to swollen states either

continuously, or by sudden jumps from one state to the other.[1,2] The equilibrium swelling

of gels in solvent has been studied extensively.[3 – 5] The swelling process of chemically

cross-linked gels can be understood by considering the osmotic pressure vs. the restraining

elastic force.[6 – 8] The total free energy of a chemical gel consists of bulk and shear

energies. In fact, in a swollen gel, the bulk energy can be characterized by the osmotic bulk

modulus K, which is defined in terms of the swelling pressure, and the volume fraction of

polymer at a given temperature. On the other hand, the shear energy that keeps the gel in

shape can be characterized by the shear modulus G. The shear energy minimizes the

nonisotropic deformations in the gel. The theory of swelling kinetics for a spherical

chemical gel was first developed by Tanaka and Filmore,[9] where the assumption is made

that the shear modulus G is negligible compared to the osmatic bulk modulus. Peters and

Candau[10] derived a model for the kinetics of swelling in spherical and cylindrical gels by

assuming non-negligible shear-modulus and Li and Tanaka[6] developed a model where

the shear modulus plays an important role that keeps the gel in shape due to coupling of

any change in different directions. This model predicts that the geometry of the gel is an

important factor, and swelling is not a pure diffusion process.

Many different experimental techniques have been used to study the kinetics of

swelling and shrinking of chemical and physical gels among which are neutron

scattering,[11] quasielastic light-scattering[10] macroscopic experiments[7] and in situ

interferometric[12] measurements. Time resolved and steady-state fluorescence techniques

were employed to study isotactic polystyrene in its gel state[13] where excimer spectra

were used to monitor the behavior of two different corformations in the gel state of

polystyrene. A pyrene derivative was used as a fluorescence molecule for monitoring the

polymerization, aging and drying of aluminosilicate gels.[14] These results were

interpreted in terms of chemical changes occurring during the sol–gel transition and the

interactions between the chromophores and the sol–gel matrix.

In situ observations of the sol–gel transition in free-radical crosslinking

copolymerization, using the steady-state fluorescence technique, were reported.[15,16]

The same technique was also applied for studying swelling and drying kinetics in disc

shaped gels.[17,18] Recently, fast transient fluorescence technique (FTRF) was used to

monitor the swelling of poly(methyl methacrylate) (PMMA) gels.[19,20]

In this work, swelling of gels formed by free radical copolymerization (FCC) of

methyl-methacrylate (MMA) and ethylene glycol dimethacrylate (EGDM) was studied in

chloroform–heptane mixtures using the FTRF technique. Lifetimes of pyrene (P) which is

embedded in the gel were followed during the in situ swelling processes. A Strobe Master

System (SMS) was used for duration measurements of P in the gel. Duration

measurements with SMS takes a much shorter time than is required in single photon

counting systems and phase instruments. This advantage of SMS allows one to make
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hundreds of measurements during the swelling process of gels. For this reason, we named

this technique Fast Transient Fluorescence (FTRF), which gives us many advantages

compared to other existing measuring techniques. It is observed that as the gel swells the

existence of P in the gel decreases which can be modeled by the using low quenching

Stern–Volmer equation. Cooperative diffusion coefficients, Dc were determined in respect

to the chloroform content in the chloroform–heptane mixtures by employing the Li–

Tanaka equation.

KINETICS OF SWELLING

It has been suggested[6] that the kinetics of swelling and shrinking of a polymer

network or gel should obey the following relation:

WðtÞ

W1

¼ 1 2
X1
n¼1

Bne2t=tn ð1Þ

Where W(t) and W1 are the swelling or solvent uptake at time t and infinite equilibrium,

respectively. W(t) can also be considered as volume difference of the gel at the times t and

zero. Each component of the displacement vector of a point in the network from its final

equilibrium location, after the gel is fully swollen, decays exponentially with a time

constant tn which is independent of time t. Here Bn is given by following relationship[6]:

Bn ¼
2ð3 2 4RÞ

a2
n 2 ð4R 2 1Þð3 2 4RÞ

ð2Þ

where R is defined as the ratio of the shear and the longitudinal osmotic modulus,

R ¼ G=M: The longitudinal osmotic modulus, M is a combination of shear, G and osmotic

bulk modulus, K, M ¼ K þ 4G=3; and an are the roots of the Bessel function given as a

function of R as follows:

R ¼
1

4
1 þ

anJ0ðanÞ

J1ðanÞ

� �
ð3Þ

Here J0 and J1 are the Bessel functions of the zeroth and first order.

In Eq. (1), tn is inversely proportional to the collective cooperative diffusion

coefficient Dc of a gel disc at the surface and is given by the relationship[7]

tn ¼
3a2

Dca2
n

ð4Þ

Here, the diffusion coefficient Dc is given by Dc ¼ M=f ¼ ðK þ 4G=3Þ=f; f is the

friction coefficient describing the viscous interaction between the polymer and the solvent,

and a represent half of the disc thickness in the final infinite equilibrium which can

experimentally be determined.

The series given by Eq. (1) is convergent. The first term of the series expansion is

dominant at large t, which correspond to the final stage of the swelling. If n . 1; an

increases and tn decreases very rapidly [see Eq. (4)]. Therefore, the kinetics of swelling in
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the limit of large t, or if t1 is much larger than the rest of tn, all higher order terms ðn $ 2Þ

in Eq. (1) can be neglected, and the swelling and shrinking can be represented by first order

kinetics.[6] In this case, Eq. (1) simplifies to:

WðtÞ

W1

¼ 1 2 B1e2ts=tc ð5Þ

Equation 5 allows us to determine the parameters B1 and tc.

It is important to note that Eq. (5) satisfies the following equation:

dWðtÞ

dt
¼

1

tc

ðW1 2 WÞ ð6Þ

which proves the mentioned the first order kinetics. The higher order terms ðn $ 2Þ can be

considered as fast decaying perturbation to the first order kinetics of swelling in the limit

of large t.

EXPERIMENTAL

EGDM has been commonly used as a crosslinker in the synthesis of polymeric

networks. The monomers MMA (Merck) and EGDM (Merck) were freed from the

inhibitor by shaking with a 10% aqueous KOH solution, washing with water, and drying

over sodium sulfate. They were then distilled under reduced pressure over copper chloride.

The swelling agent chloroform (Merck), was distilled twice over sodium.

The radical copolymerization of MMA and EGDM was performed at 658C in the

presence of 2,20-azobisisobutyronitrile (AIBN) (0.26 wt%) as an initiator. P was added as a

fluorescence probe during the gelation process. The sample was deoxygenated by bubbling

nitrogen through the solution for 10 min, then the radical copolymerization of MMA and

EGDM was performed at 65 ^ 28C: The EGDM content was kept at 0.035 vol%, and the P

concentration was taken as 4 £ 1024 M: After completed gelation, the cylindrical gel

sample was dried under vacuum and cut into the disc shaped gels for the swelling

experiments.

Fluorescence decay experiments were performed using a Photon Technology

International (PTI) Strobe Master System (SMS). In the strobe, or pulse sampling

technique[21,22] the sample is energized by a pulsed light source. The name arises from the

Photo Multiplier Tube (PMT) that is gated or strobed by a voltage pulse that is

synchronized with the pulsed light source. The intensity of the fluorescence emission is

measured in a very narrow time window on each pulse and saved in a computer. The time

window is moved to a larger time after each pulse. The strobe has the effect of turning of

the PMT and measuring the emission intensity over a very short time window. When the

data have been sampled over an appropriate range of time, a decay curve of fluorescence

intensity as a function of time can be established.

The in situ swelling experiment was carried out in the SMS of PTI, by employing a

pulsed lamp source (0.5 atm of N2). Pyrenes in the gel sample were excited at 345 nm and

fluorescence decay curves were obtained at 395 nm during the in situ swelling experiment

which was performed at room temperature. A disc shaped gel sample was placed in
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a 1 cm £ 1 cm quartz cell filled with chloroform–heptane mixtures for swelling process. The

position of the disc shaped gel and the incident and fluorescence light beams are shown in

Fig. 1 for illustration. The fluorescence decay data were collected over three decades in

time and fitted by nonlinear least squares of exponential functions using a deconvolution

Figure 2. Fluorescence profiles at various swelling steps. The number on each curve present the

swelling time in minutes.

Figure 1. Cartoon representation of the gel position in the fluorescence cell. I0 and I are the

incident and fluorescence light beams respectively. Small dots present the Pyrene molecules. t2 and

t1 are the pyrene lifetimes inside and outside the gel.
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method with a dry gel as a scatterer standard. The quality of the data fit to the model is

checked by x2 ðx2 # 1:10Þ; the distribution of the weighted residuals and the

autocorrelation of the residuals.

RESULTS AND DISCUSSIONS

Figure 2 presents the fluorescence decay profiles at various swelling stages (0, 93, 230

and 515 min). As the swelling time, ts is increased, the excited pyrenes decay faster and

 

Figure 3. The plot of the measured t1 and t2 values versus swelling time, ts for a—100, b—90, c—

80% of chloroform contents.
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faster. It indicates that as the solvent uptake is increased, the quenching of excited pyrenes

also increase. In order to probe the swelling process during solvent uptake, the

fluorescence decay curves were measured and fitted to the sum of two exponentials:

IðtÞ ¼ A1e2t=t1 þ A2e2t=t2 ð7Þ

where t1 and t2 are the pyrene lifetimes outside and inside of the gel. A1 and A2 are

the corresponding amplitudes of the decay curves. Here, the role of the solvent in

quenching is to add the quasi-continuum of states needed to satisfy energy resonance

Figure 4. Plot of the solvent uptake, W vs. swelling time, ts for a—100, b—90, c—80% of

chloroform contents.
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conditions, i.e., the solvent acts as an energy sink for rapid vibrational relaxation

which occurs after the rate limiting transition from the initial state. Birks et al.

studied the influence of solvent viscosity on the fluorescence characteristics of pyrene

solutions in various solvents and observed that the monomer internal quenching rate is

affected by the solvent quality.[23]

The measured t1 and t2 values for the gel samples swollen in various chloroform–

heptane mixtures are plotted versus swelling time, ts in Fig. 3. The t1 values did not change

much, but the t2 values decreased as ts is increased. The decrease in t2 arises from solvent

 

  
  

Figure 5. Fit of the data in Fig. 4 to Eq. (12). The slope of the curve produced tc values which are

listed in Table 1.
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quenching while the gel swells. As the chloroform content is increased in solvent mixture,

t2 decrease increasingly faster, i.e., in Fig. 3a, t2 decreases much more rapidly than in Fig.

3b,c. The effect of solvent quality can be interpreted by applying quenching mechanisms

to the produced data where the Stern–Volmer type of quenching mechanism may be

assumed for the fluorescence decay of P in the gel sample during the swelling process.[24]

The following relationship for the existence in the gel was satisfied.

t21
2 ¼ t21

20 þ kq½W� ð8Þ

where t20 is the duration of P in dry gel in which no quenching has taken place, kq is the

quenching rate constant and [W], the solvent concentration in the gel for a certain solvent

uptake. For low quenching efficiency, i.e., t20kq½W� , 1; Eq. (8) becomes

t2 < t20ð1 2 t20kq½W�Þ ð9Þ

The solvent uptake, W is obtained from volume integration:

W ¼

Z a1

a0

½W�dn ð10Þ

Where dn is the differential volume in the gel. The integration is taken from initial, a0 to

final a1 thickness of the disc shaped gel. Performing the integration, the following relation

is obtained:

W ¼ 1 2
t2

t20

� �
n

kqt20

ð11Þ

Here, n is the swollen volume of the gel, which can be measured experimentally. kq was

obtained from separate measurements.

The plots of solvent uptake, W, for the gels swollen in 100, 90 and 80% chloroform

contents are shown in Fig. 4a–c, respectively. These are typical solvent uptake curves

following the Li–Tanaka Equation [Eq. (5)].

Table 1. .

% Chloroform Dm (g) a1 (cm) tc (s) B1 a1 Dc ( £ 1025 cm2 s21)

100 0,40 0.29 2460 0.94 0.87 3.38

95 0,36 0.28 5040 0.97 0.64 2.95

90 0,16 0.27 3276 0.94 0.87 2.20

85 0,14 0.31 4200 0.93 0.95 1.96

80 0,21 0.3 6240 0.91 1 1.08

70 0,16 0.34 8640 0.93 0.95 1.14

60 0,17 0.31 9120 0.85 1.27 0.49

40 0,13 0.29 12000 0.89 1.15 0.39

20 0,02 0.23 23370 0.9 1.14 0.12

Experimentally measured; maximum solvent uptake, Dm; final disc thickness, a1; time constant, tc

and cooperative diffusion coefficient, Dc.
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The logarithmic data in Fig. 4 were fitted to the corresponding relationship of

Eq. (5):

ln 1 2
W

W1

� �
¼ ln B1 2

ts

tc

ð12Þ

The fits are presented in Fig. 5, from which B1 and tc values were obtained. These are

listed in Table 1. The plot of tc vs. the chloroform percentage is shown in Fig. 6a. As

Figure 6. The plot of a—tc and b—Dc values versus chloroform %.
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expected, the penetration of solvent molecules slows down as the heptane content is

increased. A decrease in the solvent quality prevents the gel from swelling. Knowing B1,

one can obtain a1 and from Eq. (4), Dc. These data are ploted in Fig. 6b vs. chloroform

content. The behavior of Dc in Fig. 6b is evidence for gel segments which move faster in a

thermodynamically high quality solvent, i.e., in chloroform containing solvents, gel

segments diffuse considerably faster.

Figure 7. The plot of maximum solvent uptakes measured a—from existing measurements, b—

from weighing measurements using micro-balance.
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W1 values could be obtained from the equilibrium regions in Fig. 4 and are plotted in

Fig. 7a. Figure 7b presents the observed Dm values which were obtained by subtracting the

final weight of the gel from its initial weight. In fact, the Dm and W1 values are the

parameters similar to each other but measured by different techniques. As shown in Figs.

7a,b they behave quite similarly with regard of the chloroform content. Comparing Fig. 6b

with Fig. 7, it is seen that in poor solvent quality (high heptane content) the gel does not

swell much. The segments move rather slowly compared to those in gels swollen in the

good solvent quality (high chloroform content).

CONCLUSION

We showed that the FTRF technique can be used to measure cooperative diffusion

coefficients, Dc, of the segment as a function of solvent quality during swelling a

polymeric gel. One may speculate that measuring duration by FTRF in swelling gels may

provide data which could be used for determining the rate of solvent penetration. In this

paper, we introduced the FTRF method to study gel swelling in solvents of various quality.

Solvents of poor solution quality penetrates the gel much more slowly than a solvent of

good solution quality. Gels swell much faster and to a larger extent in high quality solvent

than in bad quality solvents.
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